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Abstract —In this paper a “quasi-dynamic” approach is presented for
the analysis of arbitrarily oriented printed microstrip circuits. The

metaltic structures are assumed to be planar metals of zero thickness.
The quasi-dynamic approach differs from the quasi-static solution in the

sense that phase variation is included in the quasi-dynamic analysis.

The region of validity of the quasi-dynamic approach is investigated.
Finaliy, numericai results are presented to illustrate tbe use of this
technique.

I. INTRODUCTION

I N this presentation, the Green’s function approach for the
analysis of electromagnetic scattering from printed circuits

lying at the air–dielectric interface is utilized. The dielectric
is backed by a ground plane. For the dynamic approach, the
Green’s functions are quite complicated and require the
evaluation of certain semi-infinite integrals. This paper de-
scribes the derivation of a “quasi-dynamic” approach. For
this approach certain approximations have been made in the
evaluation of the semi-infinite integrals, resulting in much
simpler expressions. Regions of validity of the quasi-dynamic
approach are also outlined. Finally, examples are presented,

II. HORIZONTAL DIPOLES OVER A DIELECTRIC

An elementary horizontal electric dipole of moment Zdx
and oriented in the x direction is located at a height z = O
above a dielectric interface. The dielectric is backed by a
ground plane at z = – h. In this case two components of the
Hertzian vector, m, and m=, of the electric type are necessary
to specify the fields completely. Assuming a time variation
exp (.i~ t),the Hertz potentials satisfy the following wave
equation [1]:

(v’ + k;)7?,= i? ‘d,-.-J(X – X’)d(y - y’)a(z – z’) (1)

(v’ + k;)%’=o (2)
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where

k,=~’~el and kz = w2p.s2.

The electric and magnetic field vectors are derived from the
Hertzian vector:

~= k2i?-t-V(V” G) = – jmA”– V~ (3)

~=j@~(VX;)=VXA+ (4)

respectively. Therefore the Hertzian vectors are related to
the conventional magnetic vector potential A and the scalar
potential @ by

A“= jarpe~ (5)

~=v.+. (6)

The complete solution for the Hertzian vectors has been
presented in [1] and [2] and is given by

~ = ddx z-Ip(Ap)Ae-L’oz

II J4T . DTE
dA (7)

~ = I’4)za
/

H$2)(Ap)Asinh[u(z + h)] ~A

x2
4T ‘ DTE sinh ( uh)

(8)

A = 14)ZWE, -1) a
J

H~2)(Ap)Ae-””z ~A

zl
4?r z. DTE DTM

(9)

A _ I-LOI~(Er-l) a
J

H~2J(Ap)Acosh[u(z + h)] dA
22 —

4T GC DTE DTM cosh ( uh)

(lo)

where

u,)=jkz(,=~ (11)

u=jkzz=m (12)

(13)p= (x–x’)*+(y–y’)’

DTE = U(J+ ucoth(ulr) (14)

DTM = ~rut~ + utanh(uh) (15)

k;1,2+ A’ = k;,2 (16)

and c represent integration from —coto + w. Thus the zeros
of DTE and DTM give the phase constants of the character-
istic TE and TM modes propagating in such a structure. It is
shown in [2] that for frequencies ~ such that ~ < fc =

c /(4h~~), where c is the velocity of light in free space,

DTE has no real zeros, while DTM has only one real zero.
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The frequency fc which can be considered the cutoff fre-
quency of the first TE mode, is usually very high for usual
microstrip substrates. For instance for e, = 10 and h = 1 mm,
we find f= = 25 GHz. Hence we always assume f < fc and
therefore DTE has no real zeros while DTM always has a
real zero in the interval k. < A < fiko.

HI. FORMULATION OF THE PROBLEM

It is assumed that the printed circuits are of zero thickness
and that the widths of the strips are quite small compared
with the wavelength so that the variation of the current along
the transverse direction does not change significantly along
the length of the printed circuit. The current distribution
across the transverse section then depends on the ratio w/h,
where w is the strip width and h is the thickness of the
substrate. It is commonly assumed that the current has a
square root behavior across the transverse section, i.e.,

[31>[41,

Q(Y)= w , , +

&

; (17)<y<—

– Y2

so that the current has a singularity at y = + w/2. This
distribution is correct, however, if w/h <<1. If w/h>> 1,
then a better choice for the transverse variation of the
current is a constant distribution [4], [5], given by

Q(Y)=:> ; ~<y<—, (18)

Thus the printed circuits are modeled here by strips where
the transverse component of the current distribution is as-
sumed to be known and one is then solving for the longitudi-
nal distribution,

A. Moment Method Formulation

The problem of finding the current distribution on arbi-
trarily oriented zero-thickness metallic strip elements is but a
particular case of the general boundary value problem involv-
ing conducting bodies in a known impressed field, E. The
boundary condition at the surface of each perfect conductor
is that the tangential component of the electric field must be
zero. Since we are approximating the circuits by thin strips,
the following approximations can be made:

a) The currents are assumed to flow only in the axial
direction, with a transverse variation that is assumed to
be known.

b) The boundary condition (@~~l = d) is applied to the
axial component of J@”fd[ on each strip surface.

By utilizing these approx~rnation~,$we c~mpute the current
density on the strips as E&tal + Etotal = O on the surface of
the strip, or

E/,n = - F;an = (jwii+vo) = L(z) (19)

where L(J~) defines the @tegro-differential operator on the
surface current density \, and the subscript “tan” refers to

the tangential co~p~nent. Then L(J~) = ~~,,n on the surface
of the strip and I = O at the ends of the strip.

By applying the method of moments, we can reduce the
functional equation to a matrix equation. This matrix equa-

tion is obtained by first expanding the unknown current
distribution J,, in terms of triangular expansion functions T.

for the longitudinal variation of the current with unknown
coefficients a,,. Therefore

J., = fa;Q;(y)T(~) (20)

where Q( yi) denotes the transverse distribution of the cur-
rent, which is assumed to be known. By substituting J, in the
operator equation and weighting the residuals by the func-

tions Qj( Y)~(x), we obtain

(R,; ~)=a,(Q,(y)L(~) ;Qj(y)~) =( E~an; QJ(y)~)

(21)

where (,) denotes the usual Hilbert inner product. There-
fore the matrix equation can be written as

[z]/’r= 7 (22)

where [Z] is the generalized impedance matrix of dimension
N X N whose zj element is given by

z{l=(~(Qj(y)L(~ )), QJ(y)~(~)). (23)

A-is a ~olumn vector containing the unknown coefficients a,,

while V 1s the generalized voltage matrix, given by

(24)

The desired solution for [A] is obtained by inverting [Z] as

Ai=[z]-w (25)

When an impressed voltage is applied at a poin~ then only
that E’ remains nonzero and all other entries in V are zeros.

B. Computation of the Mutual Impedance Between Two

Arbitrarily Oriented Current Elements

We next compute the mutual impedance between two

arbitrarily oriented current elements i, and lj carrying cur-
rent distributions Qj( y) T,(.x) and Q,( y) Tj(x), respectively,
and situated over the interface. In order to proceed, we
reorient the coordinate system and choose the direction of
t~e Z axis as the direction of ~. The tangential electric field,
Etan, at the interface between the air and the dielectric
medium (z = O) due to an HED is given by

~ti,n=–jwAX2° + -&v(v’/r) (26)

which can be conveniently written as

& = CIG., <r + C2V
()

;G, (27)

where

– jmpc)Idx Idx
c,=

4T
c1 =

4wjcope
(28)

H~2)(AP)A dA

‘x= ~. DTE
(29)

H~2)(Ap)AN

‘,= ~. DTE DTM ‘ N=14[)+ atanh(ah). (30)

Thus, the tangential field due to current element Q,(y)~(x)
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locally oriented in the x direction is given by

&n=CIZX~ Q;(y’)dy’~G@, y,x’,y’)~(x’)&’
w, ,

{ )+C2V ~ Q,(Y’)dY’&3( x,Y, x’, Y’)z(x’)dx’ .
~,

(31)

The interaction Zij between a locally F-directed current
element, Qi( y) T$X)ZX, and a current element QJ( y)~(x)~
oriented in an arbitrary direction ~ is therefore gwen by

/(. Gx X,y, X’, y’)~i(X’)d#
I,

‘~ Qi(y’)~y’/Z(x’) ~G(x,y,x’,y’)~’.(3’2)
w, 1,

Noting that

Ti(x) and ~(x) are identically zero at the element ends, and
using integration by parts, the derivative and the gradient
operator acting on G,, can be transformed to derivatives on
the current elements. Equation (31) thus reduces to

1?-%x)q~ ,+%L?XJ ,
T(x’)G,,(. x, Y, X’, y’). (33)

The derivatives of the triangular functions can be easily
calculated analytically and they form the bipolar pulse func-
tions. So the computation of the mutual impedance between
two arbitrarily oriented triangular pulse functions situated
over a dielectric interface is equivalent to evaluating the
integrals of GX and G~,,This is dealt with in the next section.

IV. NUMERICAL EVALUATION OF GX AND G,,

In this paper two methods are utilized to evaluate the
Green’s functions GX and G,,. The first is a dynamic solution
in which the integrals are essentially evaluated in an exact
manner; the second method deals with an approximate solu-
tion, where it is assumed that the width is small enough
compared with the wavelength inside the dielectric that a
“quasi-dynamic” approximation can be made. The two soht-
tions are then compared in order to find the region of
validity of the quasi-dynamic approximation.

A. Numerical Integration of the Infinite Integrals

The Green’s functions GX and G,. can be written
interface) as

H~2)(Ap)A

“ = ~C DTE
dA = 2~>,}(Ap) ~ dA

77

(at the

(34)

Hj2)(Ap)AN

‘“= ~C DTE DTM ‘21?()(Ap)[DT~:TM]dA ’35)

We then subtract the asymptotic values of the integrals, so
that we numerically have to evaluate smoother functions. We
define

g. ‘G, ‘jrnJo(Ap) dA
()

= GX – : = 2~>[~(Ap) [+’ldA
2 /“~,l(Ap)dA =Gt, - 2

“’=G”- (6,-1) () p(cr–l)

jo[

AN 1
—— ~Jf, Ap

DTE DTM – (e, –1) 1dA . (36)
()

The rationale for doing this is that as A ~ w, gx and g,,
approach zero at a faster rate than Gx and G,,. For the sake
of simplicity we will also consider that the frequency of
operation satisfies f < c /(4h ~~). Therefore DTE has

no poles on the A axis [0, CO]and the integral for gx is well
behaved. The other integral has one pole on the real axis

[ko, &k(,]. The integrals of gX and g, are then evaluated in

the same way as described in [2].

B. The Quasi-Dynamic Solution

In this approach we perform near-field approximations for
the two integrals. The assumption k(~p <<1 leads to [2]

exp ( – jkor[~ ) exp( – jk(lrl)
GX = —

r(l r,

{[

exp ( – jk ~JrtJ)
G,, =(l–q)

ro

where

7 and .=g.r, = P* +(2th)
I

(37)

(38)

V, REGION OF VALIDITY OF THE

QUASI-DYNAMIC SOLUTION

In order to find the region of validity of the quasi-dynamic
solution, we compute the ratio of the Green’s functions
computed using the dynamic solution to those computed
using the quasi-dynamic solution. Fig. 1 shows a plot of the
ratio (RX,,,) of the magnitude of G, computed using the
dynamic solution to that computed using the quasi-dynamic
solution versus the normalized wavelength A,,. The ratio is
plotted for an ~, of 2 and different values of h. Similarly,
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computed using the dynamic approach to the magnitude of the Green’s
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values of h: e, = 2.0, hl = 0.01, h2 = 0.025, h3 = 0.05, h4 = 0.075, and
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Fig. 2. The ratio Rl~ of the phase of the Green’s function GX com-

puted using the dynamic approach to the phase of the Green’s function
Cl computed using the quasi-dynamic approach versus the normalized
distance in terms of the free-space wavelength A,, for different values of
h: c,= 2,0, hl =0.01, lr2 = 0.025, /-r3 =0.05, h4 =0.075, and h5= 0.1.

Fig. 2 shows the ratio (Ryfl) of the phase of GX computed
using the dynamic solutlon to that computed using the
quasi-dynamic solution. For values of h up to 0.075A(~, the
value of GX (magnitude and phase) predicted by the quasi-
dynamic solution is always within 15$Z of the value predicted
by the dynamic solution for all values of p. Furthermore it is
clear from Figs. 1 and 2 that the error in the magnitude of
GX tends to a constant that depends on e, and h only, while
the error in the phase goes to zero in the far-field region.
This is expected since the quasi-dynamic solution behaves as
1/pz in the far-field region at the interface.

Fig. 3 shows the phase of GX in degrees as a function of
the normalized distance in terms of A(). It can be seen that
the phase is not negligible for all values of the normalized
distance p. Thus while the value of GX predicted by quasi-
static solution is valid only in the region of zero phase, that
is, in the region very close to the source, the value predicted
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Fig. 3. The phase phax of the Green’s function Cl computed using
the dynamic approach versus the normalized distance in terms of the
free-space wavelength A(, for different values of h: e, = 2.0, hl = 0.01,

/22 = 0.025, h3= 0.05, h4 = 0.075, and h5= 0.1.
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Fig. 4. The ratio R,,,, of the magnitude of the Green’s function G,

computed using the dynamic approach to the magnitude of the Green’s
function G, computed using the quasi-dynamic approach versus the
normalized distance in terms of the free-space wavelength A(, for

different values of h: e,= 2.0, h 1 = 0.01, h2 = 0.025, lr3 = 0.05, /24=
0.075, and h5 = 0.1.

by the quasi-dynamic solution remains valid for all values of
p and therefore is more accurate.

Fig. 4 shows the ratio (R,,,,) of the magnitude of G,.
computed using the dynamic solution to that computed using
the quasi-dynamic solution versus the normalized distance.
This ratio has a peculiar behavior: it has a dip at about
0, 12A(J that is more pronounced for smaller values of h. Such
behavior was also predicted by Mosig and Sarkar in [2]. The
magnitude of G,, predicted by the quasi-dynamic solution
remains valid for values of h up to 0.1 A(J and p less than
0.075AtJ while the phase is negligible in this region.

Next we fix the substrate height h and vary the dielectric
constant ~,. Thus Figs. 5 and 6 represent the same cases as
Figs. 1 and 2 while Figs. 7 and 8 represent the same case as
Fig. 4 except that the substrate height h is fixed at 0.025A[)
and e, is allowed to vary. It can be seen that while R,,,, and

R,[, have basically the same dependence on h and ~, R,,,,,

has a much stronger dependence of e, than on h.
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VI. NUMERICAL EXAMPLES

Once GX and GO have been computed, the integrals ap-
pearing in the generalized impedance elements are then
computed numerically using a Gaussian quadrature. To eval-
uate the S parameters of an N-port network, we excite one
port at a time. The port is excited by having 1 V applied at a
position quite far away from the input terminals of the
network. We then solve the field problem utilizing triangular
expansion functions for the current and find the current
distribution on the entire structure. In order to have a circuit
description we define the voltage at a point as the line
integral of the vertical component of the electric field from
– h to O. Equivalently, it is given by the second term in the
expression (3) for the electric field, i.e.,

(under quasi-dynamic conditions).

The voltage at a point (x, y ) arising from the current distri-

, , I

i

c-’,5 ,
/. I

/ ~r4 - ,

/’ ~..-”””

/’ -..-””-

I

%3 _

/;..””” -----Er:

/-: --:---- _— -
-------- ~— ———

0.0 0.1 02 0.3 04 0.5

Fig. 7. The ratio R, ,H of the magnitude of the Green’s function G,
computed using the dynamic approach to the magnitude of the Green’s
function G, computed using the quasi-dynamic approach versus the
normalized distance in terms of the free-space wavelength A,, for
different values of E,: h = 0.025, IS,l = 2.0, E,2 = 4.0, 6,3= 6.0, C,l = 8.0,
and E,5 = 10.0.
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butions on all the conducting strips can thus be written as

j dy,Q,(Y,)J *GJX,,>YP77YP X,) (39)
w,, !1 P

where WP, lP, and Jyl, are the width, length, and current
distribution of the pth strip, i,, denotes the direction of the
current on the pth strip, and N is the total number of strips
on the circuit.

In order to obtain the two-port network parameters, two
reference planes are defined. For one particular excitation
let V1, 11 and V2, 12 be the two voltages and currents at the
two reference planes. We consider a second excitation to the
port which was not previously excited, The voltages and
currents at the same two reference planes previously defined
are denoted by V(, 1{ and Vi, l;. Then the [ A ~ c D]
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parameters of the network contained between the two preas-
signed reference planes are related by

From the [xl B C D] parameters, the S parameters or any
other parameters of interest can be obtained.

A. Computation of the Characteristic Impedance

As a first example, consider a microstrip line of finite
length (lAO) of width = O.OIAO, h = O.OIA(l, and .sr = 10.0. BY

defining the reference planes between two planes separated
by O.lAO, we obtain the [A B CD] matrix

From this 3-D analysis, we obtain such 2-D parameters as
the characteristic impedance Z~D and e,,ff. BY comparing
the above matrix to the [A B C D] matrix of a section of

3D = 50,17 and e~$f = 6,46.transmission line, we obtain Z{]
From 2-D analysis [5] and from approximate analytical

formulas [9] we obtain

Z:D = 49.15 C;:f = 6.65

and

Z;= 48.33 e;eff = 6.85.

As a second example we consider W = 0.05Atj, h = 0.005A[j,
and c, = 10.0. We obtain the [xt B C D] matrix as

The 3-D results are thus given by Z~D = 9.279 and C,,ff =
8.739, while from the 2-D and analytical formula, we obtain
Z~D = 10.21, ~~~f = 8.12, Z$ = 9.88, and e~.ff = 8.68. In both
of the above two examples the dynamic solution predicts
identical results.

B. Evaluation of Discontinuity Parameters

We consider two striplines of widths W, = 0.005Af) and
W2 = 0.05Af1 situated above a dielectric of .s, = 10.0 and
h = 0.01 A(). The line is treated as two strips. The currents at
the discontinuity are not modeled very accurately as the
structure is electrically small. From the [Z] parameters, the
S parameters are computed as

[s]=[(2+1)-’] [2-1]

where

z,, z,~
z,,=—

Z(), “2=A’=
Z2 , z“

‘2’=m z“ =—
z 02

4000 I
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Fig. 9. The real and imaginary parts of the input impedance of a strip
dipole antenna versus the normalized Wavelength in terms of the free-

space wavelength A,]. The width of the strip is O.fIIAO, the dielectric
height is 0.0796A(j, and the dielectric constant ●, is 2.25.

where Z[jl and Ztlz are the characteristic impedances of lines
1 and 2. From the [S] matrix, the discontinuity parameters
are obtained by shifting the reference planes of both ports a
distance 1 towards the discontinuity. Hence [S,ll = [DIISIIDI,

where

[

exp(j~l) O
[D]= , 1exp (jfll) “

The /1,’s and ZCJ,’Sare calculated utilizing the 3-D analysis.

The [S (magnitude, phase)] matrix is computed as

[

(0.675,8.39’) (0.7467, - 12.4°) 1‘s]=(0.7283, - 1.13°) (0.675, - 190.86°) “

The [S] matrix is complex, and the phase is very small. We
then do an approximate analysis by calculating the character-
istic impedance of both lines utilizing a 2-D analysis and
then we obtain the equivalent results by treating it as a
simple junction of two lines with different characteristic
impedances. This results in a real set of S parameters given
by

[s1=[;:’:7 0.7505 1–0.660 “

observe that the [s] matrix is not symmetric. This is due to
numerical errors incurred in the evaluation of the ABCD
matrix. Hence the extracted Z or S parameters are not
symmetric.

C. Computation of the Input Impedance of a Strip Antenna

The input impedance versus the normalized antenna length
for a center-fed antenna is considered in this section. The
strip is of width W = 0.001 A1j situated over a dielectric of
height h = 0.0796A{J (or 0.1186A,rr) and e,= 3.25. The real
and imaginary parts of the input impedance are plotted in
Fig. 9. They are similar to those predicted by a full-wave
analysis in [8].
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D. Evaluation of the Frequency-Dependent [S] Parameters of
a Step Discontinuity

Consider a junction of line widths 1 mm and 0.25 mm
situated at a height of 0.25 mm over a dielectric substrate of
●r = 10.0. The [S 1 parameters are computed as functions of
frequencies. The magnitude and phase at 12 and at 30 GHz
obtained are given by

[

(0.412, -7.45°) (0.9054, -0.626°)

‘s’2] = (0.9176, -0.6674°) (0.412,6.239°) I
[

(0.4144, -9.8W) (0.8938, - 1.343”)

1‘s30]= (0.9293, - 1.63°) (0.4154 >7.395°) “

The results are then compared with [10] and reasonable
agreement is found. Observe again that the S matrix is not
symmetric.

VII. CONCLUSION

A quasi-dynamic solution, which incorporates the phase
term over the quasi-static solution technique, for analyzing
arbitrarily oriented microstrip lines has been presented. The
region of validity of the quasi-dynamic solution has been
investigated and is found to be much larger than the region
of validity of the quasi-static solution. Finally numerical
examples were presented to validate the new approach.
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